If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+45t=0
a = -4.9; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·(-4.9)·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*-4.9}=\frac{-90}{-9.8} =9+1/5.4444444444445 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*-4.9}=\frac{0}{-9.8} =0 $
| (3)=−2x+6 | | -5.5x=1 | | 45x+135=x | | -(x/1.8)-5.14=-3.12 | | 8x+17+5x-6=180 | | 3-y=5-4y+5(2y) | | 4x²+16x=48 | | 6^x+5^x=13 | | (4x+16)(5x-11)=0 | | (5x+2)+88=180 | | (5/2)-2g=(5/2)g-3+g | | 10k+6=4(6+2k) | | 2-(1/8)y=11+(7/8)y | | 2b-9=8b+9 | | 7=3(u+1)-11 | | 4/7y=-24 | | 6(a+2)=48 | | 6+2y=5y-(y+2)∛ | | 5x+9x-44=110-8x | | -8+14+9x=2+x+12 | | 0.2xx=1 | | 6+2y=5y-(y+2)3 | | 16=56.5n23.3(2n25) | | 21+21m=42m+20 | | 3x^2-3x-7|x=-2 | | 560+3p=314 | | 7/6•6/7x=-30 | | 3x^2-3x-7x=-2 | | 72+(7x24)=180 | | -1+5x=2x^2 | | 2x+5x=5x+2x | | 3y-8=7y-52 |